Automatic Flight Control Systems Donald Mclean Pdf To Word

Posted By admin On 30.08.19

Gust Hopkin, H.R. 13,15 discrete (1-cos) 128-9, 146 Horizontal load alleviation (GLA) 423-6,429-32, 433-5 wavelength 128 tail 3 windshear 147Gyrocompass 371,377,378 Houpis, C.H. 508,522Gyroscope 9,549-52 Hovering 451 cubic 466 attitude 273 displacement 552 lateral 470 instrument 9 longitudinal 466 integrating 552 ;notion 466 laser 9 Howard, R.W. 13,15 law 549-50 Howe, R.M. 23,62 NMR 9 Human pilot 151 rate 294, 551 mathematical model 569-74 strapdown 9,336 neuromuscular lag 572 tilt angle 304-5 phase advance 571 vertical 27 pure time delay 570 Hunsaker, J.C. 424,449Halfman, R.J. 126 Hunvitz, A. 513Hall, W.E. 476,489 HydraulicHam, J.M. 526,535 actuator 538Hamiltonian 232 powerlweight 538Hancock, G.J. 104,126 typical force 538Handling qualities 151 reliability 538 diagram 157 IAE seeperformance indexHardover 273 Impulse response see Weighting functionHarper, R.P. 151, 154, 155, 171,173 InertiaHarris, T.M. 150Heading coupling 23 matrix 21 angle 41,301,350, 376 product 21-3 hold 11 In-flight refuelling 358 signal 378 INS (Inertia navigation system) 476Heave velocity 45, 118 Instrument approach (PA) 153Height 9,40 Instrument flight rules (IFR) 166 control systems 359-64 Instrument low approach system (instrument hold 264-6,359-64 landing system) (ILS) 384,388Helicopter 451 Integral feedback in LQP 248-53 control efficiency 166 Integrated flight control system 12 control sensitivity 166 Integrating gyroscope see Gyroscope equations of motion 454 Intercontinental ballistic missile (ICBM) 523 flying qualities 166 Interdiction aircraft 421 manoeuvrability 167 Inverse of a matrix see Matrix inverse normal acceleration response 167 ISE see Performance Index types 451Hesitation, roll see Roll hesitation Jet propulsion 9Hidden oscillation 496 John F. Kennedy (JFK) Airport 146,147Hiller stabilizer bar 473 Johnson, J.M. 449Hinge 121,452 Johnson, W. 121,126,454,490 moment 272, 537 Jones' function 118-19 offset 121,464 Jones, R.T. 118, 126Hinsdale, A.J. 150 Joseph, P.D. 516,522History of AFCS 10-13 Joseph stabilized discrete control law 516Hoffman,S. 22,62 Journal of Guidance, Control andHold circuit 499

Melinda

A treatment of automatic flight control systems (AFCS) for fixed wing and rotary wing aircraft. The text covers in detail the subject of stability and control theory. All the principal AFC modes are covered and the effects of atmospheric turbulance and structural flexibility are charted.

FlightAutomatic

Dynamics 151, 171, 173Jury's stability criterion 512Kaiser, J.F. 220 Laub, A.J. 236,269Kalman-Bucy filter 2624,476 Leakage flow rate 542Katz, P. 498,522 Leaky integrator see Filter, phase lagKayton, M. 348,418 Lee, R.C.K. 263,269Kennedy, J.F. (JFK) Airport see John F. Lefort, P. 456, 490 Left inverse of a matrix see Matrix inverse Kennedy Airport Level turn 29Klehr, J.T. 144, 150 Levels of acceptability 153Krendel, E.S. 569,575 Lever arm 52,53Kuo, B.C. 180,220 Leverrier algorithm 73Kiissner function 118 Lift 68Kwakernaak, H. 226,269 coefficient 83,294L', see Stability derivatives /drag ratio 84L', see Stability derivatives force 454 growth effects 118L'@see Stability derivatives Lilientha1,O. 2,423L', see Stability derivatives Limit cycle 5 , 9LfSRsee Stability derivatives LinearLagging motion 453 accelerometer 295Lagrange multiplier 211 control law 174Lamont, G.B. 512,522 feedback 177,217,295Lancaster see Aircraft quadratic problem (LQP) 232Lanchester, F.W. 65,82 state variable feedback 183Landing (L) 153 system 174Landing gear 345 LinearizationLang, G. 526,535 of gravity terms 27Langeweische, W. 323,357 of inertial terms 27Langley, S.J. 2 Linearized equations of motion 31-5Large and angular rates 23 Load alleviation and mode suppression (LAMS)Larimer, S.J. 73, 101 system 425Laser rangefinder 405 Load factor 39,41, 102, 129Lateral acceleration Localiser 386 coupled control system 388-90 control 298 receiver 387 cyclic 453 Lock number 122 feedback 340 Lockheed rigid rotor 473 Loitering (LO) 153flying qualities 157 Longitudinal accelerometer 365motion 41,459 control 273-92 stick-fixed 468 cyclic 453 dynamicsoffset 296 flying qualities 155-7phugoid mode 85,298 motion 40-1,51-2stability 102 stability 64-7 static stability 7 G 2 see also Stability static stability 53, 70LateraVdirectional control system 345 effects 95 flying qualities 157-61Lateral motion transfer functions-aYg(s) 89~R(s)


LongitudinaUlateral coupling 296, 455 422 output 74 Riccati difference equation 515Low altitude ride control (LARC) system Riccati equation 235Luenberger, D.G. 256,269 stabilizing 259Lyapunov adaptive scheme 531 transition 508 weighting 237, 238 (adaptive) rule 532 Matrix, 200,235,521 equation 141, 143, 533 , Maxim, H.S. 10 theory 531 Maybeck,P.S. 226,269 Mean aerodynamic centre (m.a.c.) 71M , see Stability derivatives Mean squared value 141Mu see Stability derivatives Mean value of a vector 256M , see Stability derivatives Measurement noise 42M ; see Stability derivatives Mechanical linkage 544-5Ma see Stability derivatives Menthe, R. 456,490MbEsee Stability derivatives Microburst 128, 144-7McCarthy, 3. 150 Microwave landing system (MLS) 418McCormick, B.W. 454,490 Mil, M.L. 454,490Mach MIL-F-8785~ 152, 173 MIL-F-9490d 152,173 number 298,369,370 MIL-F-83300 152, 173 hold system 369-71 MIL-H-8501a 152, 173McLean, D. 110, 126 Minimal realization 183McRuer, D.T. 12, 13, 15, 19, 61, 62, 171, 173, Minor loop compensation 176 270,330,339,343,357,418,569,575 MIT 525Magnetic force 546 rule 529Mallery, C.G. 533, 535 scheme 527Manoeuvrability 53,273, 423 ModalManoeuvre substitution 109 demand 288 truncation 109-10 load control (MLC) system 421 Model point 71 following 189Manual reversion 6 matching 189Map database 405 reference system 529Margin gain 200, 279 response 190 phase 200 system 529Marker Mode 111 beacon 387, 388 bending 428,431 transmitter 386, 387 divergent 66Markland, C.A. 191,220 dutch roll 9,299,348,431Markov, B. 145,150 flexibilityMaritime search and rescue (MS) 153 hovering 466Marshall, S.A. 235,269 phugoid 64, 83Mass, centre of 15 lateral phugoid 85Matrix rolling subsidence 85 coefficient 42, 64 short period 64 controllability 226 spiral 85,299 covariance 141 structural 345 driving 42, 64 third oscillatory 66 inverse torsional 107 tuck 66 generalized (pseudo) 68, 19&1,240 Moler, C.B. 101 left 191 Moment right 191 bending 107 observability 228 modal 185,235 model 190,243


pitching 22 Nosewheel steering 352 rolling 22 Numerator polynomial 75 torsional 107 yawing 22 Numerical examples of transfer functions 78,Moore, J.B. 224,269 89,92,94,95Movable fins 4Moving vane sensor 339,554 NyquistMotion diagram 200,201 bending 428,431 frequency 498 cues see Cues flapping 453 Observers 25642 209-11 hovering 466 Observability 228 lagging 453 lateral 33,41,47,53-5,455,45941,468-70 complete 228 longitudinal 32,40,43,47,455,456-9,465-6 matrix 228 phugoid in windshear 146 Off-diagonal blocks 96 rigid body 419 Offset hinges 121,468 rolling 159 Oil variables 77 compressibility effects 205-6 yawing 453 flow rate 542Munro, N. 183,220 Oppelt, W. 11, 13, 15Myers, G.C. 456,489 Optimal closed-loop observer 258-60NIP see Stability derivatives command control system 245N', see Stability derivatives control 222 control function 212 see Stability derivatives control law 235N'&* see Stability derivatives discrete control 515-6N', see Stability derivatives linear estimator 256NACA 11,424 observer theory 2 5 6 8Neal, T.P. 150 output regulator 238-42Neebe, F.C. 533,536 rejection of noise 263Negative feedback 174 single-input, single-output systemNeumark, S. 12, 15 Orientation of axes 26Neuromuscular lag 572,573 Orifice area 539Neutral heading stability 470 Oscillation hidden 496Newton, G.C. 207,208,220 pilot-induced (PIO) 151,332-3Newton's Second Law of Motion 19 Oscillatory spins 297Nichols diagram 202-3,279 Ostgaard, M.A. 417,449Nicholson, H. 235,269 OutputNikolsky, A.A. 454, 490 equation 42NMR gyroscope see Gyroscope feedback 187Noise matrix 42 regulator 23&42 measurement 42 torque 547 sensor 43 vector 42Non-equivalence of pitch rate signals 322-3 'Over-the-nose' visibility 439Non-linear Overshoot ( 0 s ) 153 equations of motion 23 function (actuator dynamics) 272 Pad6 approximation 570 rolling moment 323 Paper pilot 569Norden stabilized bomb-sight 12 Parameter adaptive scheme 533Normal acceleration see Acceleration response of an helicopter optimization 206-16Northrop 270 Parker, K.T. 250,269Nose-down manoeuvre 296 Parks, P.C. 531, 535 Parseval's theorem 207-9 Passive stabilizer bar 471-3


Index Patel, R.V. 183,220 Pole-zero cancellations 228 Path control system 358 Poorvisibility 11 Pay off functional 223 Porter, W.A. 226,269 Payne, P.R. 454,490 Position transducer 552 Peak overshoot 206,222 Positioning tasks 358 Perfect matching 190 Potentioneter 552 Performance Powel1,J.D. 498,522 Power criterion 222 index 206 plant 58 spectral density function 129-34 IAE 207 Powerlweight ratio 538, 546 ISE 207 Powered Permanent magnet (PM) motor 546-7 approach (PA) 153 Phase flying controls 6, 272 advance compensation 175,282-5,326-8,348 Poyneer, R.D. 425,449 curve see Bode diagram Precession motion 551 margin 200 Pre-filter, AFS see Filter Phugoid Prescribed degree of stability 242-3 approximation (classical) 8 3 4 Pressure altitude 358 damping ratio 65, 317 Primary flying controls 4-7, 151 mode 65, 171,277,294,318 Primed stability derivatives 37 mode in windhear 146 Principal axis system 18 motion 276 Product of inertia 21-4 natural frequency 65 Pro-stall 297 response 155-6 Proverse yaw 55,310 three degrees-of-freedom 84 Pseudo (generalized) inverse of a matrix seePhysical unrealisability 176 Matrix inverse 'Piggy-back' operation 310 Pure time delay 322,570-5Pilot human 163 Quadratic factors 65 104 induced oscillation (PIO) 331-3,467 Qualities mathematical model 569-75 reaction time 332 flying see Flying qualitiesPinsker, W.G. 357 handling 151Pitch Quantization 493 acceleration performance requirements 519 attitude 275, 317-23 Quartic, stability 65 control system 317-23,392 Quasi-static method of representing hold 10 bending effects 109 disadvantageous control 322 Quasi-steady aerodynamic strip theoly control 5 Quintic, stability 85 moment 22 Rabins, M.J. 221 motion caused by roll motion 3 3 3 4 Radar orientation control 290 rate altimeter 273 detection 164 damper 276 Radio feedback 280 altimeter 273, 403 SAS 276-82 compass 380 tight control 318,322 RAE Farnborough 11 -up 290,295 Ragazinni, J.R. 512,522Pneumatic bellows 555 Rate of change of volume 540 system 11 Rate gyroscope see GyroscopePole 196 Rate of turn 343Pole-placement methods 180-9,280,380 Reaction time, pilot's 322, 570


IndexRechlin (Flight Development Establishment 12 /spiral oscillation 161Reconnaissance (RC) 153 subsidence mode 85Reconstructibility 227 Root locus diagram 67, 195-9Reference Roskam, J. 418 Rotary wing aircraft 14 area 457 Rotor model 527 articulated 12, 452Registers 519 disc 452,479Relative dynamics 479 density parameter 457 hingeless (rigid) 452 wind direction 293 single main 451Relaxed static stability (RSS) 271, 289-92, 420 speed 454Reliability 6, 350 tail 452, 453Remnant term 572-3 two-bladed, see-saw 473Residual two main, in tandem 452 flexibility 109 Rotorcraft 451 stiffness 109 Roughton, D.J. 419,449Resolver 343 Rounded (truncated) operation 519Rholtheta navigation systems 381 Routh-Hurwitz criterion 466, 513,515Riccati Rudder 3,310 algebraic equation 235, 236 deflection 55,299 difference equation 515 effectiveness 55Ride characteristic 421 pedals 5Ride control system 10, 164,421,425,435-7 Rule-based control 534Ride discomfort index 1645,436 Runway threshold 401Rigid body Runway visual range (RVR) 400 coupling terms 116 Russell, Bertand 268 motion 19-31,426R.M.S. Safety 273 acceleration 13944 Sampled signal 491 value 130 SamplingRoberts, P.A. 150Roll interval 491 acceleration 91 period 491 angle 323 rate 498 Saturation 538 control system 323-30 Savant, C.J. 537, 555 axis 22,297 Scheduling 297,298,523 control 5, 323,330-1 Schmidt, D.K. 150 Schultheiss, P.M. 176, 220 of swing wing aircraft 303 Schur vectors 236 system 324 Schwanz, R.C. 108,119,126 use of yaw term 330 Science Museum, London 10 damping 85,298 Self-adaptive AFCS 524 derivative 54 Self-balancing torque see Torque excessive 331-3 Semi-span of wing 103 hesitation 335 Sensitivity instability 10 analysis 67 mode 298 derivatives 528 moment 22 Sensor 7, 18,549 motion 159 blending 432 performance, degraded 331 dynamics 270,273 -off 85,298 effects 294-8 . ratchet 331-3 location 287 oscillation 332 noise 43,148, 174 rate 306 damper 306-8,328-9

Automatic Flight Control Systems Donald Mclean Pdf To Word Online


saturation 295 stability see Stability sensitivity 273Series actuators 304 roll subsidence approximation 92-4Servo-controlled accelerometer 552Servo gearing 276 Spoilers 4,323 539Settling time 207, 222 Spool valve displacementShannon's theory 498 Sprater, A. 423Shapiro, E.Y. 187,220 Stability 2,223Short period approximation 7&81,276 asymptotic 228 damping 206 augmentation system (SAS) 10,270-1 ratio 65, 156,276,318 pitch rate damper 276-82 dynamics 276 frequency 65,318 roll rate damper 3 0 6 8 heave motion 129 spiral mode 54 pitching motion 129 response yaw damper 299-304Side equation 351 axis system 35 force 335 gust 54 derivativesSide arm controller 7Sideslip L', 54,307,324, 325 angle 48 L', 54 feedback 339-40 L', 53 steady 29 suppression 10,376 L', 55 L16R 55 systems 338-45 vane sensor 339 Mu 51Sikorsky S-61see AircraftSimilarity transformation 229 M, 51Simpson, A. 126Simulation 200 M; 52Single degree of freedom approximationSingle input, single output system 174 M, 52Single main rotor see Rotor M, 51Singularity 198 Ma 52Sivan, R. 226,269Small perturbation theory 28,63 Ma, 52Solenoid 544-5Solidity factor 456 M, 32S-plane diagram 67 N', 54Specificcontrol step 495Speed N', 53, 54 brake 4 control system 365-8 N1* 53,54 response 277 schedule 393 N', 55Sperry and son 10Spin axis 549 95 N(6R 55,58Spin velocity of gyro rotor 549Spiral Xu 32 convergence/divergence 85,298,323 mode 85,90,298 X, 32 x, 32 Xdl 32 Y' 53 Y, 33 Y**, 34 Y*, 34 Z, 32 2, 51 Z, 32 Z, 32 zaE 52 Z*,& 32 derivatives, primed 31 digital systems 51@15 directional 70,298,350-2,384,465-8 dynamic 7,64,72,465-79 quartic 65 quintic 85 spiral 54, 97, 160 weathercock 53,298,351


IndexStabilizability 227 Storey, C. 67,101Stabilization 8 S-turns 331 Structural reference 293Stabilizing bar 472-3 bending 273 compliance 206 Hiller 473 deflections 419 Lockheed rigid rotor 473 flexibility 102 passive 471 influence coefficients 109Stabilizing matrix 259 loading 421Stall mode control 421 condition 53, 331 vibration 420 warning 287 Sub-spaceState stable 228 discrete 508-9 uncontrollable 227 equation 12,41-3 unreconstructile 228 feedback 183,280 Stutton, O.G. 65,82,101 reconstruction 253-8 Swaim, R.L. 139,150 regulator 236-8 Swash plate 475 space 223 Swept wing aircraft 9,331 variable models of turbulence 135-8 Swing wing aircraft 323, 345 variables 42 Swortzel, F.R. 417,449 vector 42 Systems control technology 73, 101Static margin 52,71-2, 165 Takahashi, Y. 180,221 neutral 2,71,463 Take-off (TO) 153 relaxed (RSS) 271,289-92,420 Tail stability 2, 53,68-72,155,289-90,420,4614 differentially-operating 4, 323 angle of attack 462-3 horizontal 51,52, 168 cone axis 462 length 52 directional 70 volume 70 fuselage 463-4 Tail-less aircraft 52 lateral 70 Tailplane 2,456,468 longitudinal 7&2, 463 Tail rotor see Rotor main rotor 461-2 'Tail scrape' angle 439Statically unstable 3, 52 Taylor, G.I. 424,450Station-keeping system 476-82 Taylor's hypothesis 132Stationary pressure-ratio sensing probe 554-5 Taylor's series expansion of aerodynamic forceStationary random processes 129, 132, 141, 148 and moment terms 31Statistical methods 128 Terminal time 234Steady Terrain-following (TF) 153 forward speed, U, 30 Terrain-following control system 404-12 manoeuvring flight 37-9 Thelander, J.A. 17,62 pitching 39 Third oscillatory mode 66 rolling 39-40 Three degrees of freedom approximation 91-2 sideslip 29 Threshold 538 spinning 39-40 Throttle actuator 365 turn 38-9 Thrust 3, 365Stengel, R.F. 97, 101 authority 365Stick line 56 commands 296 /throttle actuator relationship 365 force 537 vertical 451 force per g 295 Thunderstorms 127, 131,144Stiffness 103,420 Tight control of pitch attitude 322Stockdale, C.R. 425,449 Tilde sign 44STOL aircraft 156-7


Index 6.4 (s) 323 Transient analogue 13&9Tilt angle, gyroscope 304-6,334 Transition matrix 508Time Translational constant motion I S 2 1 aircraft 80-1 velocity 63 engine 365 Trapezoidal integration 507 washout network 302,304,379 Trim actuator 296,473 delay 322,57&5 automatic 296 dimensionless 33,457 command input 296 half amplitude 222 conditions 68 to-climb trajectory 524 nose 5 to-first crossover 206 wheel 5Torque Trimmed state 63 disturbing 549 Truncated (rounded) operation 519 output 549 TSR-2 see Aircraft self-balancing 452 Tuck mode 66Torsional spring 551 TurbulenceTOTAL 200, 521 atmospheric 2,42,127, 130Tou, J.T. 516, 522 clear air (CAT) 127Track convective 127 desired 350 scale length 128 stability 352 state variable methods 135-7Transcendental function 570 Turkel, B.S. 150Transfer function from state and output Turn and bank indicator 9 equations 50,73-8, 85-91 TurnTransfer functions co-ordinated systems 335-8 co-ordination systems 10 helical 29 94-5 indicator 9 level 29 Tustin transform 505 Two-bladed, see-saw rotor see Rotor Two-degrees of freedom approximation Two-segment approach 387 Tyler, J.S. 183,221 u, control vector see Vector UHF 381 Unaccelerated non-level flight 296 Uncontrollable sub-space see Sub-space Undercarriage 345 Uniform sampling 491 Unit circle method 510-12 Unreconstmctible sub-space see Sub-space Unsteady aerodynamic effects 106,118 Updraft 145 USAF Flight Control Labs (Wright-Patterson Air Force Base, Dayton, Ohio, USA 525 Vane sensor 339 Vardulakis, A.L.G. 183, 220


Variable-cambered wing see Wing Index , Variance 264 Vector Whitley see Aircraft angular momentum 21 Widodo, R.J. 185,221 control, u 42,65 cross product 21,22 Wilson, E.B. 424,449 differential equation 1,41 Wind disturbance 42 error 223,246,250,259,262 axis 18 gravity 24 shear 128, 144-7 output, y 42 Wing aspect ratio 69, 164,452 state, x 42 bending 103-4 state reconstruction, x, 258 dihedral 54 divergence speed 106 thrust 463 flying 270 velocity 1,20 leveller 334Velocity loading 9, 164 forward 30, 31 mounted stores 422 translational 63 rock 297Vertical root 103 acceleration 293 rotary 451 speed stability 65 semi-span 103 thrust 451 span 51VHF 381 surface area 51VHF omni-range (VOR) 381 swept 9, 331Visibility 1 swing 323,345Visual cues see Cues torsion 105-7Visual flight rules (VFR) 166 variable-cambered 3Volume Wonham, W.M. 183,221 oil 542 Woodfield, A.A. 145,150 tail 70, 101 Word size 519Von Karman, T. 131, 148,424,450 Wright, J.R. 126VOR Wright-Patterson Air Force Base, Dayton, Ohio, beamwidth 381 USA (USAF Flight Control Lab) 525 bearing accuracy 381 geometry 383 XB-70 see Aircraft reception range 381 Xforce 21Vortex model of windsbear 145 x, state vector 42w and w' transforms 505-8 191 Y force 21 transform table 507 y, output vector 42 Yaw 91Wagner function 118Washout network 291,3014,379 acceleration 91, 164Weapons delivery (WD) 153 adverse 55Weathercock angle 28 control 5 stability see Stability damper 299-304 derivative 70 gain 376 oscillation 470 moment 22,323,345Weighted least square error criterion motion 346Weighting natural frequency 206 proverse 55 function 89 rate 300,301 matrix 223 gyroscope 299,3044 penalties 223 term in roll control 330Whitaker, P.H. 527,535 YB-49 see AircraftWhite noise 133, 135,264 Yoke 5


Index Zadeh, L.A. 266,269 Zeppelin, LZ127 11Z force 21 Zero order hold 499z-plane 510, 511 Zeros 196z-transform table of pairs 502 theory 499-501


PRENTlCE HALL INTERNATIONAL SERIES IN SYSTEMS AND CONTROL ENGINEERING SERIES EDITOR: M.J. GRIMBLEB I IAutomatic Flight Control Systems is an introductory text,coverisg in detail the subjects of stability and control,aircravt dynamics and modern control theory, culminating inthe examination of particular, important AFCSs.The book begins by discussing the dynamic responses ofaircraft to atmospheric turbulence and structural flexibility,an understanding of which is essential for the successfuldesign of any AFCS. Several fundamental AFCS modes aredescribed, including stability augmentation systems,attitude and flight path control systems.Key features include: Coverage of both fixed-wing and rotary-wingaircraft AFCSs. Two self-contained chapters on relevant modern control theory. End-of-chapterexercises, references and summaries.Suitable for undergraduate and professional aeronauticalengineers alike, this book will prove invaluable to thoserequiring an introduction to modern flighi control systems.DONALD McLEAN is currently Westland Professor ofAeronautics at the University of Southampton, UK.PRENTlCE HALL